0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
A Novel Fixed-Parameter Activation Function for Neural Networks: Enhanced Accuracy and Convergence on MNIST
نویسندگان :
Najmeh Hosseinipour-Mahani
1
Amirreza Jahantab
2
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Activation Function،Deep Learning،Fixed-Parameter،Neural Networks،MNIST Dataset،Nonlinear Function،Gradient Optimization،Vanishing Gradient Problem
چکیده :
Activation functions are essential for extracting meaningful relationships from real-world data in deep learning models. The design of activation functions is critical, as they directly influence the performance of these models. Nonlinear activation functions are commonly preferred since linear functions can limit a model’s learning capacity. Nonlinear activation functions can either have fixed parameters, which are predefined before training, or adjustable ones that modify during training. Fixed-parameter activation functions require the user to set the parameter values prior to model training. However, finding suitable parameters can be time-consuming and may slow down the convergence of the model. In this study, a novel fixed-parameter activation function is proposed and its performance is evaluated using benchmark MNIST datasets, demonstrating improvements in both accuracy and convergence speed.
لیست مقالات
لیست مقالات بایگانی شده
Efficient DL Model for Voice Pathology Detection in Healthcare Applications using Sustained Vowels
Sahar Farazi - Yasser Shekofteh
From Nodes to Themes: A Social Network Analysis and Thematic Progress in the field of Biomedical Ontologies
Elaheh Hosseini - Maral Alipour Tehrani - Hadi Zare Marzouni
Enhanced Brain Tumor Detection: A Novel CNN Approach Optimized by the Crow Search Algorithm
Maryam Moradi - Sima Emadi
Brain Age Classification from fMRI Data Using Graph Neural Networks and Evolutionary Algorithm
Nastaran Hassanzadeh - Mohammad Saniee Abadeh
Persian Intelligent Assistant in Healthcare Domain
Sarina Chitsaz - Mehrnoush Shamsfard
Intermediate Fine-Tuning for Robust Persian Emotion Detection in Text
Morteza Mahdavi Mortazavi - Mehrnoush Shamsfard
Efficient and Accurate Fairness Verification for Quantum Variational Circuits
Sajjad Hashemian Meymandi - Mohammad Saeed Arvenaghi
Split and rephrase: Simple Syntactic Sentences for NLP applications
Mahdi Asghari - Alireza Talebpour - Ghasem Darzi
Title Generation for the Qur'anic chapters by summarizing them
Masoume Maleki - Alireza Talebpour - Mostafa Moradi
Enhancing Automated Skin Cancer Detection Through Ensemble Learning and Multi-Head Attention Mechanisms
Maryam Nazari - Fatemeh Fadaie Ardestani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1