0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
A Novel Fixed-Parameter Activation Function for Neural Networks: Enhanced Accuracy and Convergence on MNIST
نویسندگان :
Najmeh Hosseinipour-Mahani
1
Amirreza Jahantab
2
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Activation Function،Deep Learning،Fixed-Parameter،Neural Networks،MNIST Dataset،Nonlinear Function،Gradient Optimization،Vanishing Gradient Problem
چکیده :
Activation functions are essential for extracting meaningful relationships from real-world data in deep learning models. The design of activation functions is critical, as they directly influence the performance of these models. Nonlinear activation functions are commonly preferred since linear functions can limit a model’s learning capacity. Nonlinear activation functions can either have fixed parameters, which are predefined before training, or adjustable ones that modify during training. Fixed-parameter activation functions require the user to set the parameter values prior to model training. However, finding suitable parameters can be time-consuming and may slow down the convergence of the model. In this study, a novel fixed-parameter activation function is proposed and its performance is evaluated using benchmark MNIST datasets, demonstrating improvements in both accuracy and convergence speed.
لیست مقالات
لیست مقالات بایگانی شده
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Examining the Role of Artificial Intelligence in Enhancing Educational Equity: A Systematic Review
Ali Rahmanipur - Shakila Mohammadi
Persian Intelligent Assistant in Healthcare Domain
Sarina Chitsaz - Mehrnoush Shamsfard
Empowering Businesses through AI: A Strategic Approach to Implementation
Ramin Feizi - Parham Soufizadeh - Kaveh Yazdifard
Improvement in intent detection and slot filling by model enhancement and different data augmentation strategies
Mohammad Mahdi HajiRamezanAli - Hasan Deldar - Mohammad Mehdi Homayounpour
Brain Age Classification from fMRI Data Using Graph Neural Networks and Evolutionary Algorithm
Nastaran Hassanzadeh - Mohammad Saniee Abadeh
Creating a Foundation for Dynamic Difficulty Adjustment within PCG of games using Imitation Learning
Navid Siamakmanesh - Arian Ganji - Monireh Abdoos - Mojtaba Vahidi-Asl
Deep Learning in Eye diseases diagnosis
Mohammad Shojaeinia - Hamid Moghaddasi
Damage Prediction of RC Columns Using Machine Learning Algorithms
Amirali Abdolmaleki - Shima Mahboubi
AI-Powered Beauty: Innovations, Transformations, and Ethical Considerations
Rana Poureskandar - Abbas Mirzaei - Babak Nouri-Moghaddam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1