0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
نویسندگان :
Faezeh Sarlakifar
1
Mohammadreza Mohammadzadeh Asl
2
Sajjad Rezvani Khaledi
3
Armin Salimi-Badr
4
1- Shahid Beheshti University
2- Shahid Beheshti University
3- Shahid Beheshti University
4- Shahid Beheshti University
کلمات کلیدی :
Extended Long Short-Term Memory (xLSTM)،Proximal Policy Optimization (PPO)،Automated Stock Trading،Actor-Critic Reinforcement Learning
چکیده :
Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact their performance in dynamic and risky environments like stock trading. To address these limitations, this study explores the usage of the newly introduced Extended Long Short-Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environment. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based methods in key trading evaluation metrics, including cumulative return, average profitability per trade, max earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-based stock trading systems.
لیست مقالات
لیست مقالات بایگانی شده
Strategies and Future Horizons of Innovative Entrepreneurship in AI-Based Programming
Milad Ghiasspour
Hybrid Deep Learning Models for Cardiovascular Disease Prediction: A Comprehensive Review of Convolution-Transformer Architectures
Ali Azimi Lamir - Masoud Bekravi - Babak Nouri Moghaddam
Exploring AI Techniques in the Identification and Control of Marine Vehicles
Milad Baghban
Examining Ethical Principles in the Development of AI for Environmental Protection with a Focus on Environmental Justice
Maryam Saadaat Nabavi Meybodi
Unlocking individual motor signatures using feature-based clustering of a graphomotor task
Zinat Zarandi - Amirreza Behmanesh - Mohammad Medhi Ebadzadeh - Thierry Pozzo
Efficient DL Model for Voice Pathology Detection in Healthcare Applications using Sustained Vowels
Sahar Farazi - Yasser Shekofteh
Computational Complexity of Sentiment Analysis Algorithms in Natural Language Processing
Kiana Karimifard - Mohammad Ghasemzadeh
A Novel Fixed-Parameter Activation Function for Neural Networks: Enhanced Accuracy and Convergence on MNIST
Najmeh Hosseinipour-Mahani - Amirreza Jahantab
Reconstruction of ECoG signals in response to visual stimuli using a model based on convolutional and regression networks.
Mohammad Amin Lotfi - Kimiya ٍEghbal - Fateneh Zareayan Jahromy
A Systematic Review of Deep Learning Applications in Parkinson’s Disease Research
Masoud Kaviani - Ahmadreza Samimi - Arman Gharehbaghi - Alireza Jahanbakhsh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1