0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Reconstruction of ECoG signals in response to visual stimuli using a model based on convolutional and regression networks.
نویسندگان :
Mohammad Amin Lotfi
1
Kimiya ٍEghbal
2
Fateneh Zareayan Jahromy
3
1- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
2- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
3- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
کلمات کلیدی :
Convolutional Neural Networks،electrocorticography،Regressor،vision
چکیده :
The visual system is one of the most sophisticated complex systems in our body, and it plays a crucial role in enabling us to perceive the world around us. When we see images, we send visual information from the eyes to different parts of the brain and various routes transmit visual information and processing. The purpose of this study is to ascertain whether it is possible to reconstruct brain signals directly from visual stimuli using deep neural networks. In order to simulate the visual routes in the brain, we implemented deep neural networks (DNNs) with the objective of predicting the electrocortical data of the whole brain of the Subjects. In this study, we employed an advanced methodology that utilized convolutional neural networks to decode the electrical activity of the brain during the processing of visual data. A convolutional neural network is employed to extract relevant features from the image, which are then fed to a deep regressor for the prediction of the electrocortical data of the subject in that trial. The results demonstrated that brain signals could be reconstructed directly from visual stimuli presented in the trial with acceptable efficiency. Furthermore, neural routes in the brain could be simulated via DNNs. This model could facilitate a deeper understanding of human vision and enhance our comprehension of data processing within the brain.
لیست مقالات
لیست مقالات بایگانی شده
Early Detection of Congestive Heart Failure in Coronary Artery Disease Patients Using ECG Based Hybrid CNN-LSTM Model
Seyyed Ali Zendehbad - Farinaz Azari - Hadi Dehbovid
Hybrid Deep Learning Models for Cardiovascular Disease Prediction: A Comprehensive Review of Convolution-Transformer Architectures
Ali Azimi Lamir - Masoud Bekravi - Babak Nouri Moghaddam
AI-Powered Beauty: Innovations, Transformations, and Ethical Considerations
Rana Poureskandar - Abbas Mirzaei - Babak Nouri-Moghaddam
A Thorough Analysis of How Chatbots Engage, with Aspects of Customer Experience; An In depth Review
Omid Noori
A Comprehensive Approach to Predicting Customer Churn with XGBoost
Reza Najari - Mehdi Sadeghzadeh
Microorganisms prediction for superier Enzyme Sequence With Alphafold Software
Melika Arabzadeh - Kimia Maleki - Bijan Bambai - Hossein Azad
Creating a Foundation for Dynamic Difficulty Adjustment within PCG of games using Imitation Learning
Navid Siamakmanesh - Arian Ganji - Monireh Abdoos - Mojtaba Vahidi-Asl
Aβ42/Aβ40 ratio prediction using MRI images features for Alzheimer’s Early Detection
Atefe Aghaei - Mohsen Ebrahimi Moghaddam
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Persian Intelligent Assistant in Healthcare Domain
Sarina Chitsaz - Mehrnoush Shamsfard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1