0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
A Comprehensive Approach to Predicting Customer Churn with XGBoost
نویسندگان :
Reza Najari
1
Mehdi Sadeghzadeh
2
1- M.Sc. Student, Department of Computer Engineering, Science and Research Branch, Islamic Azad University Tehran, Iran
2- Associate Professor, Department of Computer Engineering, Science and Research Branch, Islamic Azad University Tehran, Iran
کلمات کلیدی :
customer churn،XGBoost،machine learning،predictive modeling
چکیده :
Abstract--Customer churn is a significant challenge for businesses, leading to substantial financial losses when dissatisfied customers switch to competitors. Machine learning (ML) and deep learning (DL) methods have been increasingly employed to address this issue; however, achieving high accuracy and minimizing false predictions remain critical challenges. This study leverages the XGBoost model, a robust algorithm, for predicting customer churn. The model is optimized through parameter tuning and the SMOTE technique to address data imbalance. Experimental results demonstrate that the proposed approach achieves an overall accuracy of 85.89%, outperforming several existing methods. Additionally, this research compares the proposed model with a baseline study utilizing a BiLSTM-CNN hybrid approach. The findings highlight that a well-optimized XGBoost model offers superior predictive performance and serves as a valuable tool for businesses in managing and mitigating customer churn effectively.
لیست مقالات
لیست مقالات بایگانی شده
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
Examining Ethical Principles in the Development of AI for Environmental Protection with a Focus on Environmental Justice
Maryam Saadaat Nabavi Meybodi
Generative AI: The Bridge of Trust in the Insurance
Iman Arastoo - Kimia Karimi
Early Detection of Congestive Heart Failure in Coronary Artery Disease Patients Using ECG Based Hybrid CNN-LSTM Model
Seyyed Ali Zendehbad - Farinaz Azari - Hadi Dehbovid
Hybrid ANN and Ant Colony Algorithm for IoT Data Classification
Khadejeh Nemati - Safouro Ashoori - Moohamad hadi Amini
Enhancing IoT Data Prediction Accuracy Using Deep Learning and Metaheuristic Algorithms
Safoura Ashoori - Khadigh Nemati - Mohamad hadi Amini
Aβ42/Aβ40 ratio prediction using MRI images features for Alzheimer’s Early Detection
Atefe Aghaei - Mohsen Ebrahimi Moghaddam
Inferring organizational duties from Persian administrative and employment laws using Large Language Models (LLMs) and few-shot learning
Hojjat Hajizadeh Nowkhandan - Mohsen Kahani
A Master-Slave Approach for Simultaneously Controlling Two Drones when Carrying an Object
Seyyed Mohammad Ali Ardehali - Amin Faraji - Monireh Abdoos - Armin Salimi-Badr
Deep Learning in Healthcare: Focusing on Interpretability and Data Quality Challenges for Enhanced Disease Detection
Mahsa Yaghoobi - Abbas Mirzaei - Babak Nouri-Moghaddam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1