0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
نویسندگان :
Sajedeh Farahbod
1
Masoud Tohidfar
2
1- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
2- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
کلمات کلیدی :
Escherichia coli،Cell Growth Prediction،Metabolism Regulation،Microbial Cell Dynamics،Deep Learning in Biology
چکیده :
This study investigates the influence of four key features on the added length of Escherichia coli cells using a fully connected neural network (FCNN), based on data collected from 1,220 samples. The data comprises observations of individual cells and 10-minute sliding window averages from simulated data. Results show that removing the feature fluorescence intensity (YFP) led to the highest increase in Loss (0.3711) and root mean square error (RMSE) (0.6092). Removing cycle duration (Tcyc) also significantly reduced model accuracy, increasing Loss (0.2811) and RMSE (0.5302). In contrast, eliminating size at birth (Lb) and growth rate (Mu) had less impact. These findings highlight the importance of effective feature selection in predicting cell growth (0.2811) and RMSE (0.5302). In contrast, eliminating size at birth (Lb) and growth rate (Mu) had less impact. These findings highlight the importance of effective feature selection in predicting cell growth.
لیست مقالات
لیست مقالات بایگانی شده
Improvement in intent detection and slot filling by model enhancement and different data augmentation strategies
Mohammad Mahdi HajiRamezanAli - Hasan Deldar - Mohammad Mehdi Homayounpour
بهبود عملکرد پیشبینی دادههای IOT با رویکرد ترکیبی شبکه عصبی و الگوریتم ژنتیک
محمد هادی امینی - خدیجه نعمتی - صفورا عاشوری
Comparative Study of Criminal Responsibility of AI in the Legal Framework of Iran and Saudi Arabia
Zahra Meghdadi - Mahdi Pourcheriki
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
Inferring organizational duties from Persian administrative and employment laws using Large Language Models (LLMs) and few-shot learning
Hojjat Hajizadeh Nowkhandan - Mohsen Kahani
An Overview of the Application of Artificial Intelligence in Schools
Javad Pourkrimi - Zahra Ali Akbari
Microorganisms prediction for superier Enzyme Sequence With Alphafold Software
Melika Arabzadeh - Kimia Maleki - Bijan Bambai - Hossein Azad
Development and Validation of the Comprehensive Persian Social Perception Dictionary using a Semi-automated Method
Ali Heirani-Tabas - Pegah Nejat - Mehrnoosh Shamsfard - Sina Mahmudian
Hybrid ANN and Ant Colony Algorithm for IoT Data Classification
Khadejeh Nemati - Safouro Ashoori - Moohamad hadi Amini
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1