0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Inferring organizational duties from Persian administrative and employment laws using Large Language Models (LLMs) and few-shot learning
نویسندگان :
Hojjat Hajizadeh Nowkhandan
1
Mohsen Kahani
2
1- Department of Computer Engineering Ferdowsi University of Mashhad
2- Department of Computer Engineering Ferdowsi University of Mashhad
کلمات کلیدی :
Natural Language Processing،Large Language Models،Few-shot Learning،Duty Extraction،Document Segmentation،Legal Informatics
چکیده :
Extracting organizational duties from legal documents is a critical yet challenging task, particularly in low-resource languages like Persian. This paper presents an innovative approach that integrates state-of-the-art Named Entity Recognition (NER) with advanced segmentation techniques and Large Language Models (LLMs) to accurately identify and extract duties assigned to organizations from Persian legal texts. Leveraging the power of the BERT-based model for NER, we enhance the recognition of relevant entities and ensure precise linkage to target organizations. Our method involves segmenting documents into sentences with an enhanced POS-based tokenizer, followed by the retrieval of contextually relevant segments based on the detected entities. We then explore the effectiveness of different LLM configurations, including a hierarchical approach that leverages both small and large models. Our experiments demonstrate that the hierarchical approach, combining 'Llama-3.1-8B' and 'gpt-4o', achieves an F1-score of 0.7901, significantly outperforming single-model approaches. This research underscores the potential of LLMs in legal text analysis, paving the way for more advanced tools in Natural Language Processing. Future work will include testing on a broader range of organizations, refining prompt engineering techniques, and enhancing model interpretability.
لیست مقالات
لیست مقالات بایگانی شده
A Systematic Review of Deep Learning Applications in Parkinson’s Disease Research
Masoud Kaviani - Ahmadreza Samimi - Arman Gharehbaghi - Alireza Jahanbakhsh
Enhanced Brain Tumor Detection: A Novel CNN Approach Optimized by the Crow Search Algorithm
Maryam Moradi - Sima Emadi
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Strategies and Future Horizons of Innovative Entrepreneurship in AI-Based Programming
Milad Ghiasspour
MQL-NPC: A Modified Q-Learning-based Approach to Design Intelligent Non-Player Character in a Survival Game
Morteza Nalbandi - Athena Abdi
Improvement in intent detection and slot filling by model enhancement and different data augmentation strategies
Mohammad Mahdi HajiRamezanAli - Hasan Deldar - Mohammad Mehdi Homayounpour
Deep Learning Frailty Model for Heart Failure Survival Prediction
Solmaz Norouzi - Mohammad Asghari Jafarabadi - Ebrahim Hajizadeh - Hossein Khormaei - Nasim Naderi
Enhancing IoT Data Prediction Accuracy Using Deep Learning and Metaheuristic Algorithms
Safoura Ashoori - Khadigh Nemati - Mohamad hadi Amini
Examining Ethical Principles in the Development of AI for Environmental Protection with a Focus on Environmental Justice
Maryam Saadaat Nabavi Meybodi
Title Generation for the Qur'anic chapters by summarizing them
Masoume Maleki - Alireza Talebpour - Mostafa Moradi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1