0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Deep Learning Frailty Model for Heart Failure Survival Prediction
نویسندگان :
Solmaz Norouzi
1
Mohammad Asghari Jafarabadi
2
Ebrahim Hajizadeh
3
Hossein Khormaei
4
Nasim Naderi
5
1- دانشگاه تربیت مدرس
2- Monash university
3- دانشگاه تربیت مدرس
4- دانشگاه ملی مهارت
5- دانشگاه علوم پزشکی ایران
کلمات کلیدی :
Deep Learning،survival analysis،prediction،heart failure
چکیده :
Abstract—The study employed Deep Learning Frailty(DLF), a compelling neural modeling framework for predicting heart failure patient survival. The DLF embeds a notion of multiplicative frailty from classical survival analysis that deals with unobserved heterogeneity while exploiting the neural structure's strong capabilities in approximating any non-linear covariate relationship. Keywords—Deep Learning, prediction, survival analysis, heart failure
لیست مقالات
لیست مقالات بایگانی شده
Enhancing Automated Skin Cancer Detection Through Ensemble Learning and Multi-Head Attention Mechanisms
Maryam Nazari - Fatemeh Fadaie Ardestani
AI Hugs the Theology of Peace, but friendly or backstabbing?
Aliasghar Ahmadi
A Comprehensive Review of Machine Learning Applications in Multiple Sclerosis: From Diagnosis to Prognosis and Treatment Response Prediction
Mahdie Azizi hashjin - Babak Nouri-Moghaddam - Abbas Mirzaei
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Efficient and Accurate Fairness Verification for Quantum Variational Circuits
Sajjad Hashemian Meymandi - Mohammad Saeed Arvenaghi
Deep Learning Frailty Model for Heart Failure Survival Prediction
Solmaz Norouzi - Mohammad Asghari Jafarabadi - Ebrahim Hajizadeh - Hossein Khormaei - Nasim Naderi
Genetic algorithm-based hyperparameter optimization of convolutional neural network models for white blood cells classification
Ahmad Nasrollahpour - Mohammad Khanabadi Borchalouei - Toktam Khatibi
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Attention Mechanisms in Deep Learning for Multiple Sclerosis Classification
Mahdie Azizi hashjin - Mahsa Yaghoobi - Babak Nouri-Moghaddam
Enhanced Early Diagnosis of Parkinson’s Disease via Transformer-Based Deep Learning and GAN-Augmented Handwriting Analysis
Fateme Darkhal - Seyyed Ali Zendehbad - Zahra Sedaghat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1