0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Potential of machine learning algorithms for predicting the properties of medium-density fiberboard (MDF): preliminary results
نویسندگان :
Rahim Mohebbi Gargari
1
Ali Shalbafan
2
Seyed Jalil Alavi
3
Maryam Amirmazlaghni
4
Seyed Hamzeh Sadatnejad
5
Heiko Thoemen
6
1- Tabiat Modares university
2- Tabiat Modares university
3- Tabiat Modares university
4- Amirkabir University of Technology
5- Quality Manager at Kimia Choob Golestan Co
6- Bern University of Applied Sciences
کلمات کلیدی :
machine learning،wood-based panel،quality control،random forest،feature selection
چکیده :
Traditional quality control methods in the wood-based panel industry, especially for medium-density fiberboard, are insufficient to compete in the current market. In addition, due to the rapid growth of wood-based panel production and the need to provide competitive products in the market, there is an unprecedented need to explore new methods of quality control throughout the production process. Therefore, it seems necessary to use new quality control methods based on artificial intelligence and machine learning algorithms, because they have high predictive and optimization capabilities. The aim of this research is to develop suitable model to identify the most important and effective variables in the production process of industrial fiberboards and finally to predict the properties of the final product such as the bending strength (MOR) based on industrial data. For this purpose, the R software environment was used to implement the random forest algorithm to identify important variables. The performance of the model was evaluated using the coefficient of determination (R²) and the root mean square error (RMSE). The results showed moderate accuracy with an R² value of 0.49, which means that the model explained 85% of the variance of the dependent variable. The RMSE was 1.565, indicating a low prediction error. These metrics demonstrate the robustness and reliability of the random forest algorithm in managing complex data sets and producing accurate predictions.
لیست مقالات
لیست مقالات بایگانی شده
From Nodes to Themes: A Social Network Analysis and Thematic Progress in the field of Biomedical Ontologies
Elaheh Hosseini - Maral Alipour Tehrani - Hadi Zare Marzouni
A Comprehensive Review of Machine Learning Applications in Multiple Sclerosis: From Diagnosis to Prognosis and Treatment Response Prediction
Mahdie Azizi hashjin - Babak Nouri-Moghaddam - Abbas Mirzaei
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Improvement in intent detection and slot filling by model enhancement and different data augmentation strategies
Mohammad Mahdi HajiRamezanAli - Hasan Deldar - Mohammad Mehdi Homayounpour
Automated Recognition of Marine Thermal Patterns Using Deep Learning
Alireza Sharifi - Alireza Vafaeinejad
بهبود عملکرد پیشبینی دادههای IOT با رویکرد ترکیبی شبکه عصبی و الگوریتم ژنتیک
محمد هادی امینی - خدیجه نعمتی - صفورا عاشوری
A Novel Fixed-Parameter Activation Function for Neural Networks: Enhanced Accuracy and Convergence on MNIST
Najmeh Hosseinipour-Mahani - Amirreza Jahantab
Unlocking individual motor signatures using feature-based clustering of a graphomotor task
Zinat Zarandi - Amirreza Behmanesh - Mohammad Medhi Ebadzadeh - Thierry Pozzo
White blood cell image analysis using CNN model
Fahimeh Jahanbakhshi - Hamid Latifi
MQL-NPC: A Modified Q-Learning-based Approach to Design Intelligent Non-Player Character in a Survival Game
Morteza Nalbandi - Athena Abdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.1